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C L A S S E S  OF  A N A L Y T I C  F U N C T I O N S  
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ABSTRACT 

The  funct ion f (z) ,  analytic in the unit disc, is in A p if fftzl<, If(z)[~dxdy < ~. A 
necessary  condition on the moduli  of  the zeros of  A ~ funct ions  is shown  to be 
best  possible. The funct ion f (z )  belongs to B ~ if fflzp<, log*If(z)  [)~dxdy < oo. 
Let  {z,} be the zero set of  a B ~ function.  A necessary  condit ion on [z, [ is 
obtained, which, in particular, implies that  5:(1 - I z, I) '+"/~+" < ~ for all e > 0 
(p _-> I). A condit ion on the Taylor  coefficients of f is obtained, which is 
sufficient for inclusion of f in B ~. This  in turn shows  that  the necessary  
condition on [ z, [ is essential ly the best  possible. Another  consequence  is that,  
for q _-> l, p < q, there exists  a B ~ zero set which is not  a B q zero set. 

1. Zeros of A ~ functions 

A function f ( z ) ,  analytic in the unit disc, is said to belong to the space A", 
0 < p  <o% if 

l f f  i f ( z ) , . d x d y < ~ "  Ilfllg = -~ t~r<, 

Let f E A ~, and let {z.} be the sequence of its zeros, repeated according to their 

multiplicity, such that Iz, I - I z21 ---- I z31 =< "'" (the "ordered zeros" of f). What 
can one say about the rate of convergence of I z. [ to the unit c ircumference? 

As pointed out by B. Epstein [1], since If(z)[" is subharmonic in [z I < 1, we 

have. for It I< 1, 

[ /( t) l~ =<~r(1- ltl) 2 z-tp<l it I t f ( z ) l"dxay < ( l _ l t l ) 2  

so that 

(1) 
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A 
If(t)[ < ( 1 - I t l )  ='" 

68 

(It[ < 1), 
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with A = Ill'lip- H. S. Shapiro and A. L. Shields [4] proved that, if ]" is analytic in 

the unit disc and satisfies (l), then 

O i ~  

where n(r)  denotes the number of zeros of 1" in Iz I < r. This is equivalent to 

saying that 

Thus, in particular, Y.(I- Iz. I)"" < 2  for every e >0 ,  so that {z.} "almost"  

satisfies the Blaschke condition 2 ( 1 -  I z. I) < 2, which holds for H p spaces. 

If one follows the estimates of Shapiro and Shields, it is not hard to see that 

the constant behind the big " 0 "  in (2) is 4/p. C. Horowitz  [3], who obtained 

many interesting results concerning A p zero sets, proved a theorem which 

brings the constant down to 1/p. Specifically, he proved that if l E A  p, 
(0 < p < 2), and [(0) / 0, then 

(3) ~I I zk I-' <- cn "", 
k = l  

where {z. } are the ordered zeros of [, and c depends only on 1" and p. From (3) it 
follows that 

(4) 

and so 

( l -  rz, I)< -logfz, I _-_logo +  log., 
k = l  k = l  

(5) lira sup (log n)- '  2 (1 - [zk I) ~ 1/p. 

Since {Izk f} is nondecreasing, we have Y~,. ,(1- Iz~ I)--> n ( l -  [z, I), and com- 
bining this with (4), we conclude that' 

1-1z.f <• 
(6) l imsup n -' log n = p 

From Horowitz 's  work [3], it follows that the constant l ip in (5) is sharp, but 

this in itself does not imply the sharpness of (6). (It does not even exclude the 

possibility that the lira sup in (6) is always zero.) We will now show that the 

constant l lp in (6) is indeed the best possible. 

t The lira sup of (I - [z. I)/(n-I log n) was first studied by Epstein [I]. 
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THEOREM I. 

.f E A p such that  

1 Iz l > _ _  
(7) lim,_~sup n - ' log n 

where {z,} are the ordered zeros o.f .f. 

PROOF. 

(8) 

E. BELLER Israel J. Math., 

For each p ( 0 <  p < ~), and .for each e > 0 ,  there exists an 

l 
p ( l + e )  

Le t  e > 0. Choose  a natural  N _- 2 such that  ( N  - I)- '  < e. Set 

f ( z )  = ~I [I + bkZ~ 
k - O  

where  nk = 2 N' (k = 0, 1 , 2 , . . .  ,), n_, = 0, and bk = ntk ~"§ Since the radius of  

c o n v e r g e n c e  of  Y-~'~o bkz c---"~-'~ is I, it fol lows that .f is analyt ic  in I z [ < 1, and its 

zeros  are precisely  the zeros  of  the fac tors  of  the right side of  (8). Clearly,  for  

nk- , < n <= nk, we have 

In part icular ,  

~-{p(I ~ r  ) ( r lk - -n  k i)} - I  Iz, I = b~ ' ~ - ' * - ' r ' =  n - . 

l - [ z ~  [=  l - e x p (  - I o g n k  ) 
p (1 + e) (nk  -- nk-,) 

log nk log 2 nk Io1~ nk 
> p ( l + e ) ( n k - n k _ ~ )  2 p e ( l + e ) ~ ( n k - n k - O E > p ( l + e ) n k  

for  sufficiently large k, which proves  (7). Thus,  it remains  to be shown that  our  f 

belongs to AP. 

We will use the fol lowing theo rem of Horowi t z  [3]: 

THEOREM H. Let  f ( z )  = Y.~_oakZ k be analytic in the unit disc and let S(2 ~= 

:Z~_o IRk I q (o < q < 2).  
(i) For 0 < p  < 2 ,  if S'~ ~ = O ( n * )  for  s o m e  a < 2/p, then .f ~ A p 

(ii) For 2 < p < ~ ,  let q = p / ( p  - I). I.f St~ ~ = O ( n ~  .for s o m e  a < q - I, then 

.f ~ A p. 

We first need the fol lowing 

LEMMA 1. For the .f defined in (8), we have 

S~q~= I ~ ( l + b ~ )  ( O < q < o o ; m = O , l  2 , . - . ) .  n m  

k - O  

PROOF OF LEMMA !. We use induct ion on m. It is t rue for  m = O; assume 

that  .~{q~ = H~-o (1 + b ~). Set ~ n  m 
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Jr,.(Z) = 1-~ [1 + bkz'k-"k-')]. 
k = 0  

N o t e  that  fro(z) = E'~oakZ k, since deg (fro) = nm < nm+, -  rim. Thus ,  

n m n m 

f , ,+,(z) = [1 + b,~+,z'"'§ (z)  = ~ akz k + ~ akbr,§ Z '~§247 
k = 0  k = 0  

so that  
n m  m + l  

S'q' = ~] l a ~ l q ( l + b Z + , )  = 1-I ( l + b l ) .  �9 n m + l  
k = 0  k = 0  

We now p roceed  to p rove  that  l E A  p. Le t  us first cons ider  the case 

0 < p  _-<2. Us ing  L e m m a  1, we have 

k = 0  k = 0  k ~ 0  k = 0  k = 0  

Thus,  fo r  m 0 ,1 ,2 ,  we have  ~2~ o . . . .  , S , .  < Kn,,,, where  a < 2/p. Let  us now look 

at the n ' s  be tween  n ,_ ,  and n~. For  n ,_j  < n < n ,  - n ,_j ,  we have 

S(2) = ~<2) ~ Kn~._, < K n  ~ 
n ~ n m _  I 

while for  nm - n~_~ < n < = n,., we have 

, ~ ( 2 )  < (2) S ,  < Kn,~ < K {n,,/(nm - n~_,)} ~ �9 n" < K 2 " n ' .  ~ n  = m 

Thus,  S~ )=  O ( n " ) ,  and by  T h e o r e m  H(i), [ E A "  

For  the case 2 < p  < ~ ,  with q = p / ( p -  1), it can  be shown,  by  a lmos t  

identical  reasoning,  that  S~  ~= O ( n " ) ,  where  a < q -  1, and so by T h e o r e m  

H(ii) we again have  jr ~ A ~. This conc ludes  the p roo f  of  T h e o r e m  1. 

REMARK. H o r o w i t z  [2] genera l ized (3) by p rov ing  that  if jr E A*, and {zk} are 

its (ordered)  zeros  in the sec tor  0j _-< arg z _-< 02, then 

[-I ]z. [-~<= cn ~Ip, where  /3 = ( 0 2 -  0,)/(2~-). 
k = l  

The func t ions  (8) cons t ruc t ed  a b o v e  obv ious ly  p rove  that  this result  fo r  

sectors ,  toge ther  with the result ing analog of  (6), is the best  possible.  

2. B p spaces  

For  each  A "  space,  0 < p < ~, (6) gives us upper  bounds  for  1 - [z. I which,  

as we have  seen,  are the best  possible.  This leads one  to inquire abou t  the 
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situation for the class of functions ,f, analytic in l z I < I, for which the integral 

ffl,,<~ log* I[(z)ldxdy is finite (corresponding to the Nevanlinna class N in H ~ 

theory).  We can be a bit more general; namely, for each p, 0 <  p < ~c, let B '  be 

the set of functions [(z),  analytic in the unit disc, for which 

f f ( l ~ 2 4 7  < ~. 
I z l< l  

Aside from the obvious inclusion B q C B p for p < q, let us note that B p 

(0 < p < ~c) is actually an algebra under pointwise addition and multiplication. 

Indeed, the inequality 

log+If + gl-<_log+l f]  +log+lgl  + log2  

shows that B p is closed under addition, while closure under multiplication 

follows from 

Iog+[fg [ ~ log+lfl + Iog+lg [. 

This implies that the union of two B p zero sets is a B p zero set, which contrasts 

with the fact that the union of two A p zero sets is an A pn zero set, but not 

necessarily an A q zero set for q > p/2 (see Horowitz [3]). In particular, this 

means that we cannot expect  to have such a " t ight"  hierarchy of upper bounds 

for  I - I zn 1, as exhibited by (6), which differ only by a multiplicative parameter  

depending on p. 

We now state the analog of (6) for B p functions: 

THEOREM 2. Suppose [ E B p, I <= p <:r and let {z,} be its ordered zeros. 

Then 

COROLLARY. 

1 - IT. [ = o ( n - ' " ' + " )  �9 

I / f E B  p, I < - p < ~ c ,  then for all e > O, 

( I -  IT, t) '§ <oc. 
~1=1 

PROOF OF THEOREM 2. Set 

M, = (27r)-' rjo 2- 

Given e > 0, let 

(Iog+lf(re")l)PdO, ( O < r <  I). 

A ={r[M,  > e/( l  - r)}. 
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The fact that f belongs to B" implies that M, is integrable on 0 =< r < 1. Roughly 

speaking, this tells us that A becomes "rarer" as r ~ 1. To make this idea 

precise, let L = [1 - 2  -~§ 1 -2 -~ ) ,  so that [0, 1) = U~_, L. Then 

(9) lim /z(A fq/ . )  = lim 2"p,(A n I,) = 0. 

Indeed, assume the contrary of (9), i.e., assume that there exists a subsequence 

{n~} and a number c > 0  such that 

~(Anh, )>=c2 -n- (k = 1 ,2 ,3 , . . - ) .  

Then 

fo' M, dr>-_ {e/(l-r)}dr>= {e / ( l - r )}dr  
ffi nl% 

S > 2~".-'~(A A L~)_->~ 2".c2-n~ _-~, 
k - I  = 

contradicting the integrability of M,. 

Now let K be such that p.(A N h ) _ - 3 - ' 2  -k for k = K. For each natural n, 

define k(n) to be the index of the subinterval h in which [z~ I ~ lies: [z, l i e  h. 

For sufficiently large n, k(n) will be greater than K. For such n, it is always 

possible to choose an rntE A such that 

(10) Iz, I~-  < r, = Iz, 1~+2-'2 -k. 

Assume for simplicity that f ( 0 ) =  1. For each rn, Jensen's  theorem yields 

fo "" 1 fo z, ,~ log r n _  1 logl[(rne,O)ldO<=~_~ iog+ll(r~e,O)ldO 
.z ,~ [z,I 2 ~  

( fo t TM =< l 2.(iog+lf(r.e,e)l)PdO =(l< -rn)';P" 

(The second inequality holds because p = 1, while the last inequality follows 

from the fact that r ~  A.) Using (lO), we have 

(l - ~ . ) -" .  _-< (~ - I z .  It) - '" (1 - (1 - I z .  I~)-' 2-~)  - ' '  

--< 2 " ~ ( 1 -  Iz~ li) -''~ _-__ 2~'~(1-  Iz. l) -''~. 

Putting everything together, we have 

(11) ~ log r. 2'/% TM 

r,,,~,. F,I < ( 1 -  [z.I) ''~" 
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On the other hand, 

E log r. >__ E log ]z" )~> 

Israel J. Math., 

E log tz" [~ 

~ Ioglz.  l - ~ - k n l o g l z ,  l ~ � 8 9  
Iz?:i[z.! 

Combining this with (11), we conclude that, for sufficiently large n, 

I - ]z. I -< 2'"'2)/(P+')e 'l'P+')n -~1(,+,,. 

Thus, 

lim sup n"/ (P+' ) ( i  - ] z .  [) _-< coe ,l(p+,) 

Since this is true for every e > 0, we finally conclude that 

1 - I z. I = o(n-"""+"). 

If [(z)  has a zero of order m at the origin, (m -- 0, 1 ,2 , . . - ) ,  one needs only to 

divide by [(m)(O)zm/m! before applying the above argument. 

Our next task is to find conditions on the Taylor coefficients of [ which insure 

that f E B ~. With the aid of these conditions, we will be able to show -that the 

exponent of n in Theorem 2 is the best possible. Another consequence will be 

that for p < q, (q _-> 1), there exists a B p zero set which is not a B q zero set. But 

first, we need the following asymptotic formula: 

LEMMA 2. 

Then 

Let a > 0, and let {c.} be defined by 

g ( x ) = e x p { ( l - x ) - ~  = ~ c.x". 
n = O  

c. ~ K(a)n-C~ a't(~162176 

as n ---~oc, where K(a)=(27ra(a  + 1)) -'/2. 

PROOF. By the Cauchy formula, 

c" = g'")(0)n, = 2 ~ - i l f c z - " - ' g ( z ) d z =  ~ilfc exp (~. (z))dz, 

where ~b,(z) = e -~176 (n + 1)log z, and C is any simple closed path around 

the origin which leaves the singularity at z = 1 in its exterior. 
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Le t  u. be  the unique real va lue  of  z at  which  O ' (z )  

au. ( l  - u . )  -~ = n + l. Thus ,  

(12) u. = 1 - a ~:~'+~n-II(~+'+ O(n-2/to+l~). 

75 

van i shes ,  so that  

H e n c e f o r t h  we will supp re s s  the index n of  u,. 

Le t  the pa th  C be c o m p o s e d  of  the ver t ical  line th rough  u f r o m  u - i R  to 

u + JR, (R > I), t oge the r  with the left  hand semici rc le  with cen te r  u and  radius  

R, desc r ibed  coun te r c lockwi se .  It is e a s y  to see that  as R --~ ~,  the integral  on 

the semici rc le  goes  to zero.  Thus ,  wri t ing au(I  - u) -~ for  n + 1 in the in tegrand,  

we have  

g(">(O)_ 1 f,,"+~| n ! 2 v i  exp(qJ. (z))  dz 

(13) 

- 2~rl exp{( l  - u )  -~ + ( n  + l ) l o g u }  f_" exp(~b. (y) )dy ,  

where  

~b.(y) = e x p { -  a log ( l  - u - i y ) } - ( I  - u) -~ - au( l  - u) -~- ' log(1 + iy /u) .  

We will n o w  show that  the integral  on ( - ~ , - � 8 9  is 

exponen t i a l ly  small  as n--~ ~. Specif ical ly ,  it is c la imed that  

(14) { f_ j ,2 , , - . ,+ f,~,,_., } e x p ( c b . ( y ) ) d y : O ( e x p ( - K n ~ 1 7 6  

where  K > 0 depends  on ly  on a. Indeed ,  

~_o { c o s ( a  �9 a r c t an  { - y](l - u)}) 
Re~b.(y)  = (1 - u ,  \ ~ i ~  y ~  -__- u ~ / ~ -  

so that  

f / ,  exp  4~. (y y = 
I - u )  I - u )  

while 

l 2(l_---Uu)log(l+ y' /u2)) ,  

exp  (Red>. (y ) )dy  

f/ exp{( l  - u ) - "  ([1 + y2/(1 - u)2) -*'~- 1]}dy 
l - u )  

< e x p (  - {l - (4/5)~ - u ) -~  
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exp(Red~.(y))dy <= e x p { -  �89 + l)log(1 + y2/u2)}dy 

< f ~  exp{- �89  + I)log(2y/u)}dy 

2u-~("+" 
n + ~  < 2 exp ( - �89 log 2). 

Since Re4),(y) is even, the proof of (14) is complete. 

Now we concentrate on [ - � 8 9  � 89  Setting y = ( l - u ) x / 2 ,  we 

have 

( 
~(l-.) f f) )-~l-~> exp ~b. (y )dy  = ' ( 1  - u) exp{(l-u)-*h.(x)}dx, (15) 

where 

au ( h.(x) = e x p { -  a log(l - ix/2)}- 1 - 1 _ - - ~ l o g  1 + 
i ( 1  - u)x] 

/ 

Setting x = ( 1 -  u)"12v, we have 

(16) ~ ( l - u )  f-'l exp{(l-u)-~ =�89176 ['~= g.(v)dv, 

where g.(v) equals e x p { ( l -  u)-~ ( [ I -  u]at2v)} when Iv l ~ ( I - u )  -~ and 

zero otherwise. 

We now claim that 

(17) limg.(v)=exp(-8-1a(a+l)v 2) ( - o o < v < o o ) ,  

and 

(18) ::l u > 0  such that Ig,(v)l <=e -"v' 

By dominated convergence,  (17) and (18) yield 

(n  = 1 , 2 , 3 , . . . ) .  

(19) !ira g.(v)dv = e x p ( - 8 - l a ( a  + l)v')dv = 2 ~ ( 2 +  I) �9 

By combining (12), (13), (14), (15), (16), and (19), Lemma 2 is proved. Thus, it 

remains to prove (17) and (18). 
Since h,(x) = -8 -1{a(a  + 1)+ a ( l -  u)/u}x2+ O(x 3) uniformly in n, it fol- 

lows that, for any v, 
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g,(v)  = exp ( -  8-'{a (a + 1)+ a(1 - u)/u} v 2) + O((1 - u)~ 3) 

for sufficiently large n, which implies (17). 

To prove (18), note that 

�9 arctan (x/2)) Re h, (x) < cos (a 1 < 0 (x ~ 0). 
tl  + u/a)a12 X 

Now let 

k ( x )  = 

1 ( c ~  "arctan (x/2)) ) 
-- + x 2/4)'n - 1 (x ~ 0) 

77 

(21) Er = 

(20) 
= O(n-(~ +~)/(z~ +2)exp {(a -~'(~ + a 'l"+~))n ~176 

We want to apply Jensen's inequality ~b(fgdO)<-f<k(g)dO with 4~(t)= 

exp (2t'/"), and g (0) = log" If(re'~149 Noting that ~b"(t) > 0 for t > ((p - 1)/2)" 

when p > 1, while for 0 < p _-< 1, cb"(t) is positive for all positive t, we set 

{0] If(re'~ i("-')} ( p > l )  

{0 1 If(re'~ (O<p  _--< 1). 

Now Jensen's inequality yields, for 0 < r < l, 

[a, [ 2 = exp (O(n el(c+,))) 

- 8 - ' a ( a  + 1) (x =0).  

k(x)  is continuous and negative in [ -  1, 1], and therefore attains its (negative) 

maximum there, say - t z .  Thus, for all n, 

Rex-2h,(x)<=k(x)<= - I x  ( - l = < x = < l ) .  

This implies that Ig,(v)I<=e -"v~ for I v I = < ( 1 - u )  -~ Since g , ( v ) = O  for 

I v I > (1 - u) -~ (18) is proved. 

Now we are in a position to prove 

Tr~EOREM 3. Let f ( z ) =  E~=oa,z" be analytic in the unit disc. I f  l a, I = 
exp(O(n'("+')- ' ) )  for some e > 0 ,  ( 0 < p  < ~ ) ,  then f ~ B p. 

PROOF. First let us note 1 / ( p + l ) - e < c / ( c + l )  for some c < l / p .  Now 

choose a satisfying c < a < 1/p. It is clear that 
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exp(2{g--~Er) f~" logP [f(rei~ '1~) 

< 1 f~ [f(reiO)12dO<_ 2zr l fo2- = tz(E,) , I~(Er)27r [f(re'~ 

2 rr ~o l an I'r 2n. 
tz (E , )  = 

Combining this with (20) and L e m m a  2, we have 

(22, exp(2{g--~E~)f~" logP[f(re'~ K - - -~ , )  exp ((1 - r2)-~ 

for some a < l/p, where K is a constant  independent  of r. Now let A~ equal 
((p - 1)/2)" for p > 1, and zero for p < 1. From (21) and (22) it follows that 

1 r 2~ 2--~Jo (l~176 

ix(E,) 1 fE (23) _--- gp + 2 ~  I~(Er----~) , l~ If(re")ldO 

~1 [Ix(E,) ''~ K 1 ( 1 _  r2)_.} ~. < A p + [ ~ \ ~ )  . l o g ~ +  

Since {it(E,)} '/p log 1/tz(Er) is bounded as r---> 1-, the right hand side of (23) is 
integrable with respect  to r on [0, 1] whenever  ( 1 -  r~) -~ is, i.e., whenever  
a < 1/p, which is indeed the case. Thus 

ffz,<, (l~ +lf(z)l)Pdxdy = fo' fo 2,(l~247176 < ~" " 

We are now in a position to prove the following 

PROPOSITION. (i) For every e > 0  and M > 0 ,  there exists an f E B ~ with 
ordered zero set {z. } such that, for sufficiently large n, 

1 - [ z .  [ > M n  -(p/(p+l)+e) (0 < p < ~). 

(ii) For every ~ > 0 there exists an f E B p such that. 

( 1 - [ z . I )  ' * ' ' ' ~ ' - '  = ~  ( 0 < p  < ~ ) .  
n = 0  

Note  that (i) says that the exponent  of n in Theorem 2 is sharp, while (ii) shows 
that the 1 + 1/p in the exponent  of 1 - [z, [ in the Corollary is the best possible. 
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(It is not yet clear whether one may dispense with the additive e in the 

exponent of the Corollary.) 

However,  in spite of the fact that Theorem 2 gives a necessary condition in 

terms of the moduli of the zeros, which is essentially the best possible, one 

cannot hope that this is anywhere near a sufficient condition for inclusion in B ~. 

Indeed, since ( log+If(z)[)  ~ is subharmonic for p > I, the fact that f belongs to 

B ~ implies (in a manner similar to Inequality (1)), that 

[ f ( z ) l  _-<exp 
A 

( 1 - 1 z  I)"" " 

In particular, let p > 2. It now follows from a theorem in Shapiro and Shields 

[4] that those zeros of f which lie on a single radius satisfy the Blaschke 

condition X(l - I z. I) < oo. 

PROOF OF PROPOSITION. Given e > 0, let/3 = l / (p + 1) - e. As in the proof of 

Theorem I, let 

f(Z)= k--lI~ (1 + bkzf"~-"~-'~), 

but this time set nk = 2 k, and bk = exp (Mn  ~), (where M is an arbitrary positive 

number). Now for nk-~ < n -< nk, we have 

_ _ [ -  M 2 ~ \  M2(O_~k_l) -,-~) 1 Iz, l = l  e x p [ ~ ) >  = M n , _ ,  

> Mn-" -~)  = Mn-(P/(P§ 

where the first inequality holds for sufficiently large k. Thus, it remains to be 

shown that f E B p. 

As before, let f ( z ) =  Z~=oa,z ~. For rn = 1 , 2 , 3 , . . . ,  we have 

a , .  =,_,FI bk = e x p ( M , . , ~  2e~ )<exp (Kn~) ,  

where K = 2O+JM/(2 B -  1). Clearly, a, _->0 for all n. Also, if n < n=, then 

a, < a,..  Thus, for n,,_~ < n =< n,., we have 

a, _-< a , .  < exp (Kn~)  = exp (2aKn~_0 < exp (2aMn~). 

By Theorem 3, f belongs to B p, and (i) is proved. Part (ii) follows trivially. 

THEOREM 4. Let  q >= l. For  any p < q, there exists a B"  zero set which is not 

a B q zero set. 
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PROOF. Choose e > 0 satisfying p / ( p  + 1) + e < q / ( q  + 1). By the Proposi- 

tion, there exists an f S B  p whose ordered zero set satisfies l - [ z , ] - - -  

n-~P~tP+'~+~ for sufficiently large n. By Theorem 2, this cannot be the zero set of 

a B q function. 
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