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ZEROS OF A” FUNCTIONS AND RELATED
CLASSES OF ANALYTIC FUNCTIONS

BY
ELIYAHU BELLER

ABSTRACT

The function f(z), analytic in the unit disc, isin A” if [, -, |f(z)|?dxdy <=. A
necessary condition on the moduli of the zeros of A® functions is shown to be
best possible. The function f(z) belongs to B* if [[, <, log"|f(z)|)?dxdy < c.
Let {z.} be the zero set of a B” function. A necessary condition on |z, | is
obtained, which, in particular, implies that (1 —|z, |)"**"** <« for all ¢ >0
(p Z1). A condition on the Taylor coefficients of f is obtained, which is
sufficient for inclusion of f in B® This in turn shows that the necessary
condition on |z, | is essentially the best possible. Another consequence is that,
for g = 1, p < g, there exists a B® zero set which is not a B? zero set.

1. Zeros of A* functions

A function f(z), analytic in the unit disc, is said to belong to the space A°®,
0<p <, if

1
I = [ [ 1@ 1dxdy <

Let f € A®, and let {z,} be the sequence of its zeros, repeated according to their
multiplicity, such that |z,| = |2,| = |z;| = - - - (the “ordered zeros” of f). What
can one say about the rate of convergence of | z, | to the unit circumference?

As pointed out by B. Epstein [1], since |f(z)|® is subharmonic in |z]| <1, we
have, for [t| <1,

e 1 > e,
lf(t)l = 7T(l - ftl)z ,[J'!z—tkl—ltl lf(Z)l dXdy <(1 - 't‘)z
so that
A
(1) (f)] <= (el <D,
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with A = ||f||,. H. S. Shapiro and A. L. Shields [4] proved that, if f is analytic in
the unit disc and satisfies (1), then

n(r)=0(llr 1r)

where n(r) denotes the number of zeros of f in |z| <r. This is equivalent to
saying that

) 1|z = o(“’%‘).

Thus, in particular, Z(1 - |z,|)'"* <= for every £ >0, so that {z,} “almost”
satisfies the Blaschke condition 2(1~ |z, |) <, which holds for H” spaces.

If one follows the estimates of Shapiro and Shields, it is not hard to see that
the constant behind the big “O” in (2) is 4/p. C. Horowitz [3), who obtained
many interesting results concerning A*® zero sets, proved a theorem which
brings the constant down to 1/p. Specifically, he proved that if f€ A",
(0 < p <), and f(0) #0, then

3) [Tzl =cnm

where {z,.} are the ordered zeros of f, and ¢ depends only on f and p. From (3) it
follows that

4) }:: (1-|z< 2 ~log|z| =logc +ll)logn,
and so
) limsup (logn)™" 3 (1—|z) = 1/p.

Since {|z.|} is nondecreasing, we have =}_,(1-|z|)= n(1 - |z.|), and com-
bining this with (4), we conclude that'

6) lim sup Ioz] =

1
ne=" n'logn=p"

From Horowitz’s work [3], it follows that the constant 1/p in (5) is sharp, but
this in itself does not imply the sharpness of (6). (It does not even exclude the
possibility that the limsup in (6) is always zero.) We will now show that the
constant 1/p in (6) is indeed the best possible.

" The limsup of (1 - |z.|)/(n""log n) was first studied by Epstein [1].
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THeoreM 1. For each p (0<p <), and for each ¢ >0, there exists an
f € AP such that

. 1|2, 1
0 ln?asllpn“logn >p(l+e)’

where {z,} are the ordered zeros of f.

ProoF. Let £ >0. Choose a natural N =2 such that (N —1)"' <. Set

@®) ﬂn=11n+bJW“Hm

where n, =2¥ (k=0,1,2,-++,), n_,=0,and b, = n?"**"", Since the radius of
convergence of 5., bz ™ ™" is 1, it follows that f is analytic in |z | <1, and its
zeros are precisely the zeros of the factors of the right side of (8). Clearly, for
n,. <n=n, we have

|2, | = b2 = gyl om0,
In particular,
— log n,
-]z, |=1—ex ( )
[ | Pl T+ e)(n —no)

log n, B log’ n, log n,
pU+e)(m—n) 2p*(0+e)V(me—n_)*” p(+e)n

for sufficiently large k, which proves (7). Thus, it remains to be shown that our f
belongs to A”.
We will use the following theorem of Horowitz [3]:

THeEOREM H. Let f(z) = Zi-oaz* be analytic in the unit disc and let S’ =
S1olac]® (0< q <).

(i) For 0<p =2, if S¥=0(n*) for some a <2/p, then fE A".

(i) For2=p <=, letq=plip—1). If S = O(n®) for some a <q — 1, then
fE A"

We first need the following
LemMa 1. For the f defined in (8), we have

so=]la+b1) O<g<xm=012,-)
k=0

Proor oF LEMMA 1. We use induction on m. It is true for m = 0; assume
that S =TI7-,(1+ b}). Set
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fu(2) = [] (14 bz,
k=0
Note that f.(z) = Sz, aiz", since deg(f) = np < M+ — M. Thus,

'Im ﬂm
fair(2) =14 by 2™ £, (2) = D, @z + D, @by 2 o™,
k=0 k=0

so that

M m+1

SO =5 la | A+bs.)=[] A+bd). ]
k=0

k=0

We now proceed to prove that f € AP. Let us first consider the case
0<p =2. Using Lemma 1, we have

3

so=ITa+ed <[l a+bd) [[ bi=K ][] bi= K] 220
k=0 k=0 k=0 k k=0

I

0

— K22(N"‘“*l)/(p(l*s)(N—l)) < Kn 3'(II+(N—|)_')/(P(1+8))'
Thus, for m =0,1,2,-+ -, we have S < Kn 2, where a <2/p. Let us now look
at the n’s between n,,_, and n,.. For n,,_,<n <n,, — n,-,, we have

2) _ Q2
S;)_s()

Am—

< Knj_ < Kn®,
while for n,, —n,,_,=n = n,, we have
SP=8P<Knfi=K{n.J(n,—n,)}*-n*<K2°n®.

Thus, S = 0(n*®), and by Theorem H(), f€ A®.

For the case 2<p <, with ¢ =p/(p — 1), it can be shown, by almost
identical reasoning, that S’ = O (n®), where a <q — 1, and so by Theorem
H(ii) we again have f € A®. This concludes the proof of Theorem 1.

ReMARK. Horowitz [2] generalized (3) by proving that if f € A?, and {2, } are
its (ordered) zeros in the sector @, =argz = 6,, then

[T1z| " scn®®, where B=(6:—6./2m).

The functions (8) constructed above obviously prove that this result for
sectors, together with the resulting analog of (6), is the best possible.

2. B* spaces

For each A” space, 0 < p <, (6) gives us upper bounds for 1 — |z, | which,
as we have seen, are the best possible. This leads one to inquire about the
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situation for the class of functions f, analytic in |z| < I, for which the integral
[fiz<1log™|f(z)|dxdy is finite (corresponding to the Nevanlinna class N in H®
theory). We can be a bit more general; namely, for each p, 0 <p <=, let B® be
the set of functions f(z), analytic in the unit disc, for which

ffl | (log*|f(2)])Pdxdy < =.

Aside from the obvious inclusion BY CB? for p <gq, let us note that B”
(0 < p <=) is actually an algebra under pointwise addition and multiplication.
Indeed, the inequality

log*|f+g| =log"|f| +1log*|g| +1log2

shows that B? is closed under addition, while closure under multiplication
follows from

log*|fg| =log*|f| +1og*|g].

This implies that the union of two B® zero sets is a B® zero set, which contrasts
with the fact that the union of two A® zero sets is an A" zero set, but not
necessarily an A¢ zero set for ¢ > p/2 (see Horowitz [3]). In particular, this
means that we cannot expect to have such a “tight” hierarchy of upper bounds
for 1 - |z,.], as exhibited by (6), which differ only by a multiplicative parameter
depending on p.

We now state the analog of (6) for B? functions:

THEOREM 2. Suppose f € B?, 1 =p <=, and let {z,} be its ordéred zeros.
Then

1—z.] = 0(n?"*"),

CoroLLARY. If fE B?, 1=p <=, then for all € >0,
21 (1= [z, Yrrverre < x,
PrOOF OF THEOREM 2. Set
M, =Q2n)" f:" (log* | f(re'*)|)°d®, o=r<l.

Given £ >0, let

A={riM. >¢/(1~r)}.



Vol. 22, 1975 ZEROS OF A*® FUNCTIONS 73

The fact that f belongs to B? implies that M, is integrable on 0 = r < 1. Roughly
speaking, this tells us that A becomes ‘“‘rarer” as r— 1. To make this idea
precise, let I, ={1—-2"""",1-27"), so that [0,1) = Uz_, I.. Then

) ll_rE %I"—) = !‘l_r.rl 2"u(ANI)=0.

Indeed, assume the contrary of (9), i.e., assume that there exists a subsequence
{n.} and a number ¢ >0 such that

[.L(A ﬂI,.k)écz_"" (k=1,2,3,"')-
Then

ﬁl M,dréJ’A {8/(1_r)}dr='>_§1 Lm {e/(1-r)}dr

@®

> 3 2 (A N I,.)ég S 2me2 ™ =,
k=1

k=1

contradicting the integrability of M.

Now let K be such that u(A N L)=3""2"* for k =z K. For each natural n,
define k(n) to be the index of the subinterval I, in which |z, |! lies: |z, |*€ L.
For sufficiently large n, k(n) will be greater than K. For such n, it is always
possible to choose an r,& A such that

(10) |z i=r = |z |1+ 271275

Assume for simplicity that f(0) = 1. For each r,, Jensen’s theorem yields

2

L_L " i0 L " + io
Iz;s:’" log lzil_Zvrfo log|f(r.e )|d0§2ﬂ , log™|f(r.e*)|d6

£ 1/p

= (3= f " (0g"|f(re®)|d8) = S

(The second inequality holds because p = 1, while the last inequality follows
from the fact that r,& A.) Using (10), we have
(I=r)" =1 -]z h" Q-1 -]z b2y
=2 - |z, |H"P =27 (1 |z )"
Putting everything together, we have

22/96 tp

(11 S logl—;%l<(—l—_l—zn|7,,—,.

lzi|Srn
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On the other hand,

l ‘% i ‘i
> logﬁ'—,; > ., log f;i, 3'12 log lz;.»l

lzi'sr, lzi'S 2| |S]2q)

2 > loglz.| = ~inlog|z.| Zin (1 - |2|).

5z,
Combining this with (11), we conclude that, for sufficiéntly large n,

1- lz" ' = 2(0‘2)/(p+l)£ l/(p+l)n -p/(P+l)_

Thus,

limsup n?®*"(1 - |z,|) = c,e """,

Since this is true for every £ >0, we finally conclude that
1=z, =o(n Py,

If f(z) has a zero of order m at the origin, (m =0,1,2,---), one needs only to
divide by f™(0)z™/m! before applying the above argument.

Our next task is to find conditions on the Taylor coefficients of f which insure
that f € B®. With the aid of these conditions, we will be able to show that the
exponent of n in Theorem 2 is the best possible. Another consequence will be
that for p < g, (g = 1), there exists a B” zero set which is not a B? zero set. But
first, we need the following asymptotic formula:

LemMma 2. Let a >0, and let {c,} be defined by
g(x)=exp{(l-x)""}= Zo cax ™.

Then
C, ~ K(a)n—(n*Z)/(2a+2)exp ({a -n/(a+l)+ al/(uH)}nal(aH))
as n —x, where K(a)=Qma(a + 1))

Proor. By the Cauchy formula,

(n)
Cn =w——]—L z27"7'g(2)dz =2+rifc exp (¢, (z))dz,

n!  2mi

where ¢,(z) = e ***'""® —(n + 1)log z, and C is any simple closed path around
the origin which leaves the singularity at z =1 in its exterior.
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Let u, be the unique real value of z at which '(z) vanishes, so that
au, (1 —u,)"'=n +1. Thus,

(]2) U, = l _ alt‘(ai»!)n—li(a*t)_*_ O(n—Zf(tud)).

Henceforth we will suppress the index n of u,.

Let the path C be composed of the vertical line through u# from u — iR to
u + iR, (R > 1), together with the left hand semicircle with center u and radius
R, described counterclockwise. It is easy to see that as R — «, the integral on
the semicircle goes to zero. Thus, writing au(1 — u)~" for n + 1 in the integrand,
we have

{n) 0 u+ioo
'gT(!“)z_z}l?L_,.m exp(¥n(z))dz
(13) | .
= sexplll—u)* +(n+ Dlogu) [ exp(@n(r)dy,
where

du(y)=exp{—alog(l~u—iy)}—(1—u)?—au(l—u)*"'"log(1+iy/u).

We will now show that the integral on (—o, —3(1 —u)]U (1 — u),») is
exponentially small as n — x. Specifically, it is claimed that

ap {77+ Jexpo. 0y = 0texp(- Kner),

x 1200 -u)

where K >0 depends only on a. Indeed,

cos(a -arctan{—y/(1-u)}) |___au

(1+y2/(l_u)2)a/2 2(1_u)log(l+y2/uz)>y

Redn(y) = (I —u)'"(

so that

f“ leXp¢n(y)ldy=f exp(Red.(y)dy
fa-w da-w)

= L exp{(1—u) ([1+ y*(1 - u)™*"— 1]} dy

1-u)
<exp(—{l—(@4/5)"}(1—u)™),

while
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f exp(Red.(y))dy = fm exp{—3(n+ Dlog(1+ y*fu?}dy

u

< f”exp{_;(,,+1)log(2y/u)}dy

2y Hney

1
—— <2exp(—3nlog?2).

Since Red,(y) is even, the proof of (14) is complete.
Now we concentrate on [—3(1 —u), (1 —u)). Setting y=(1—-u)x/2, we
have

o-w 1
(15) f_k exp¢n(y)dy=%(1—u)j_l exp{(1 - u)h, (x)}dx,

1—u)

where

ha(x) = exp{— a log (1 - ix/2)} — I —%mg(l +%)

Setting x = (1 — u)**v, we have

a6y  i(1—u) f-. exp{(1— u)*h,(x)}dx =3(1— u)e*>? fﬁ: g.(v)dv,

where g.(v) equals exp{(1 —u)*h.([1 - u]*?v)} when |v|=(1—u)*? and
zero otherwise.
We now claim that

a7 lim g.(v) =exp(-87'a(a+1)v?) (~2<v<w),
and
(18) I >0 such that |g.(v)|=e™ (n=123,---).

By dominated convergence, (17) and (18) yield

. - )%

exp(—8'a(a+ )vi)dv =2 (m

(19) lim f g (v)dv = f
By combining (12), (13), (14), (15), (16), and (19), Lemma 2 is proved. Thus, it
remains to prove (17) and (18).

Since h,(x)= —8'{a(a + 1)+ a(l — u)/u}x*+ O(x’) uniformly in n, it fol-
lows that, for any v,
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g.(v) =exp(—8{a(a + 1)+ a(l—u)/u}v?)+ O((1 — u)**v?

for sufficiently large n, which implies (17).
To prove (18), note that

cos(a -arctan (x/2))

Reh,(x) < 1+ x7jay" 1<0 (x#0).
Now let
1 (cos(a -arctan(x/2))
?( (1+ x*/4)" 1) x>0
k(x)=
—8'a(a+1) (x =0).

k(x) is continuous and negative in [ — 1, 1], and therefore attains its (negative)
maximum there, say — u. Thus, for all n,

Rexh(x)=k(x)= —u (-1=x=1.
This implies that |g.(v)| =e™ for |v|=(1~u)” Since g.(v)=0 for

[v]|>(1—u)*? (18) is proved.
Now we are in a position to prove

THEOREM 3. Let f(z) =327 oa.z" be analytic in the unit disc. If |a.|=
exp (O(n"®*"=¢)) for some € >0, (0<p <), then f € B".

Proor. First let us note 1/(p +1)— e <c/(c + 1) for some ¢ <1/p. Now
choose a satisfying ¢ < a < 1/p. It is clear that
'an '2 — exp(o(nc/(c+|)))
(20) - O(n—(a+2)/(2a+2) exp {(a —afta+y) a l/(n+1))na/(a+l)}).

We want to apply Jensen’s inequality ¢(fgdf)=[¢d(g)do with ¢(¢t) =
exp(2t'?), and g (0) =log” | f(re)|. Noting that ¢"(¢t) >0 for t > ((p — 1)/2)*
when p > 1, while for 0<p =1, ¢"(¢) is positive for all positive ¢, we set

{0 |f(re®)|ze¥ ™™  (p>1)
Q1 E =
8] |f(re®)| =1} O<p=1).

Now Jensen’s inequality yields, for 0 <r <1,
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exp(2{ﬁ L, log”lf(re"")]d()}”p>

- CNEF7 2w 1 0y |2
= =55 |, Irrenrdo s 2ol [T e a0

M(E Z ,an|2r2n.

Combining this with (20) and Lemma 2, we have

(22) exp <2 {ﬁ L, log? | f(re®)| do}up> < ” (IZ_’) exp((1—r)™),

for some a < 1/p, where K is a constant independent of r. Now let A, equal
((p — D/2)* for p > 1, and zero for p =1. From (21) and (22) it follows that

2—17T—L " (log*|f(re®)|)*d6

23 o
= <4, + 2 | tog?Iftre)) a0
LwENP K 1.,
<Ap+{2< o ) log——— “(E) 2(1 r’y” }

Since {u (E,)}"” log 1/ (E,) is bounded as r — 17, the right hand side of (23) is
integrable with respect to r on [0,1] whenever (1—r?)% is, i.e., whenever
a < 1/p, which is indeed the case. Thus

J'.[lzkl (1°g+,f(2)|)dedy=L L"(10g+|f(re")|)"d0rdr<oo_ .

We are now in a position to prove the following

ProprosITION. (i) For every ¢ >0 and M >0, there exists an f € B® with
ordered zero set {z.} such that, for sufficiently large n,

1= |z.| Z Mn~@/e**o 0< p <),
(ii) For every & >0 there exists an f € B*® such that-

S U=z )" "t =0 (0<p < o).
n=0

Note that (i) says that the exponent of n in Theorem 2 is sharp, while (ii) shows
that the 1+ 1/p in the exponent of 1 — |z, | in the Corollary is the best possible.
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(It is not yet clear whether one may dispense with the additive £ in the
exponent of the Corollary.)

However, in spite of the fact that Theorem 2 gives a necessary condition in
terms of the moduli of the zeros, which is essentially the best possible, one
cannot hope that this is anywhere near a sufficient condition for inclusion in B?.
Indeed, since (log*|f(z)|)? is subharmonic for p = 1, the fact that f belongs to
B? implies (in a manner similar to Inequality (1)), that

<exp—2a
,f(z)l =exp(1_|zl)2/P :

In particular, let p > 2. It now follows from a theorem in Shapiro and Shields
[4] that those zeros of f which lie on a single radius satisfy the Blaschke
condition £(1-|z,|) <.

ProoF ofF ProrosiTioN. Given € >0, let 8 = 1/(p + 1) — ¢. As in the proof of
Theorem 1, let

f(z)= ﬁ (l + bkz["r"._,l),

k=1

but this time set n, = 2* and b, = exp(Mn¥), (where M is an arbitrary positive
number). Now for n._, < n = n,, we have

— Bk

el = - exp (Z22) 5 pao- - s

> Mn—(l—ﬂ) — Mn —(p/(p+l)*8),

where the first inequality holds for sufficiently large k. Thus, it remains to be
shown that f € B*,
As before, let f(z)=27_0a.z". For m =1,2,3,---, we have

a,, =[] b =exp (M > 2"“) <exp(Knp),
k=1 k=1
where K =2%"'"M/(2®° — 1). Clearly, a, =0 for all n. Also, if n <n,, then
a, < d.,. Thus, for n,_,<n = n,, we have
a, = a,, <exp(Knf)=exp(2°Knt_) <exp(2°Mn?*).
By Theorem 3, f belongs to B?, and (i) is proved. Part (ii) follows trivially.

THEOREM 4. Let q = 1. For any p < q, there exists a B zero set which is not
a B? zero set.
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Proor. Choose ¢ >0 satisfying p/(p + 1) + ¢ < q/(q + 1). By the Proposi-
tion, there exists an f&€ B” whose ordered zero set satisfies 1—|z,| =

n~®"®*1*) for sufficiently large n. By Theorem 2, this cannot be the zero set of
a B? function.
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